初始化上传

This commit is contained in:
2025-08-26 08:37:44 +08:00
commit 31d81b91b6
448 changed files with 80981 additions and 0 deletions

View File

@@ -0,0 +1,163 @@
using System;
namespace ICSharpCode.SharpZipLib.Checksum
{
/// <summary>
/// Computes Adler32 checksum for a stream of data. An Adler32
/// checksum is not as reliable as a CRC32 checksum, but a lot faster to
/// compute.
///
/// The specification for Adler32 may be found in RFC 1950.
/// ZLIB Compressed Data Format Specification version 3.3)
///
///
/// From that document:
///
/// "ADLER32 (Adler-32 checksum)
/// This contains a checksum value of the uncompressed data
/// (excluding any dictionary data) computed according to Adler-32
/// algorithm. This algorithm is a 32-bit extension and improvement
/// of the Fletcher algorithm, used in the ITU-T X.224 / ISO 8073
/// standard.
///
/// Adler-32 is composed of two sums accumulated per byte: s1 is
/// the sum of all bytes, s2 is the sum of all s1 values. Both sums
/// are done modulo 65521. s1 is initialized to 1, s2 to zero. The
/// Adler-32 checksum is stored as s2*65536 + s1 in most-
/// significant-byte first (network) order."
///
/// "8.2. The Adler-32 algorithm
///
/// The Adler-32 algorithm is much faster than the CRC32 algorithm yet
/// still provides an extremely low probability of undetected errors.
///
/// The modulo on unsigned long accumulators can be delayed for 5552
/// bytes, so the modulo operation time is negligible. If the bytes
/// are a, b, c, the second sum is 3a + 2b + c + 3, and so is position
/// and order sensitive, unlike the first sum, which is just a
/// checksum. That 65521 is prime is important to avoid a possible
/// large class of two-byte errors that leave the check unchanged.
/// (The Fletcher checksum uses 255, which is not prime and which also
/// makes the Fletcher check insensitive to single byte changes 0 -
/// 255.)
///
/// The sum s1 is initialized to 1 instead of zero to make the length
/// of the sequence part of s2, so that the length does not have to be
/// checked separately. (Any sequence of zeroes has a Fletcher
/// checksum of zero.)"
/// </summary>
/// <see cref="ICSharpCode.SharpZipLib.Zip.Compression.Streams.InflaterInputStream"/>
/// <see cref="ICSharpCode.SharpZipLib.Zip.Compression.Streams.DeflaterOutputStream"/>
public sealed class Adler32 : IChecksum
{
#region Instance Fields
/// <summary>
/// largest prime smaller than 65536
/// </summary>
private static readonly uint BASE = 65521;
/// <summary>
/// The CRC data checksum so far.
/// </summary>
private uint checkValue;
#endregion Instance Fields
/// <summary>
/// Initialise a default instance of <see cref="Adler32"></see>
/// </summary>
public Adler32()
{
Reset();
}
/// <summary>
/// Resets the Adler32 data checksum as if no update was ever called.
/// </summary>
public void Reset()
{
checkValue = 1;
}
/// <summary>
/// Returns the Adler32 data checksum computed so far.
/// </summary>
public long Value
{
get
{
return checkValue;
}
}
/// <summary>
/// Updates the checksum with the byte b.
/// </summary>
/// <param name="bval">
/// The data value to add. The high byte of the int is ignored.
/// </param>
public void Update(int bval)
{
// We could make a length 1 byte array and call update again, but I
// would rather not have that overhead
uint s1 = checkValue & 0xFFFF;
uint s2 = checkValue >> 16;
s1 = (s1 + ((uint)bval & 0xFF)) % BASE;
s2 = (s1 + s2) % BASE;
checkValue = (s2 << 16) + s1;
}
/// <summary>
/// Updates the Adler32 data checksum with the bytes taken from
/// a block of data.
/// </summary>
/// <param name="buffer">Contains the data to update the checksum with.</param>
public void Update(byte[] buffer)
{
if (buffer == null)
{
throw new ArgumentNullException(nameof(buffer));
}
Update(new ArraySegment<byte>(buffer, 0, buffer.Length));
}
/// <summary>
/// Update Adler32 data checksum based on a portion of a block of data
/// </summary>
/// <param name = "segment">
/// The chunk of data to add
/// </param>
public void Update(ArraySegment<byte> segment)
{
//(By Per Bothner)
uint s1 = checkValue & 0xFFFF;
uint s2 = checkValue >> 16;
var count = segment.Count;
var offset = segment.Offset;
while (count > 0)
{
// We can defer the modulo operation:
// s1 maximally grows from 65521 to 65521 + 255 * 3800
// s2 maximally grows by 3800 * median(s1) = 2090079800 < 2^31
int n = 3800;
if (n > count)
{
n = count;
}
count -= n;
while (--n >= 0)
{
s1 = s1 + (uint)(segment.Array[offset++] & 0xff);
s2 = s2 + s1;
}
s1 %= BASE;
s2 %= BASE;
}
checkValue = (s2 << 16) | s1;
}
}
}

View File

@@ -0,0 +1,171 @@
using System;
using System.Runtime.CompilerServices;
namespace ICSharpCode.SharpZipLib.Checksum
{
/// <summary>
/// CRC-32 with unreversed data and reversed output
/// </summary>
/// <remarks>
/// Generate a table for a byte-wise 32-bit CRC calculation on the polynomial:
/// x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x^1+x^0.
///
/// Polynomials over GF(2) are represented in binary, one bit per coefficient,
/// with the lowest powers in the most significant bit. Then adding polynomials
/// is just exclusive-or, and multiplying a polynomial by x is a right shift by
/// one. If we call the above polynomial p, and represent a byte as the
/// polynomial q, also with the lowest power in the most significant bit (so the
/// byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
/// where a mod b means the remainder after dividing a by b.
///
/// This calculation is done using the shift-register method of multiplying and
/// taking the remainder. The register is initialized to zero, and for each
/// incoming bit, x^32 is added mod p to the register if the bit is a one (where
/// x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
/// x (which is shifting right by one and adding x^32 mod p if the bit shifted
/// out is a one). We start with the highest power (least significant bit) of
/// q and repeat for all eight bits of q.
///
/// This implementation uses sixteen lookup tables stored in one linear array
/// to implement the slicing-by-16 algorithm, a variant of the slicing-by-8
/// algorithm described in this Intel white paper:
///
/// https://web.archive.org/web/20120722193753/http://download.intel.com/technology/comms/perfnet/download/slicing-by-8.pdf
///
/// The first lookup table is simply the CRC of all possible eight bit values.
/// Each successive lookup table is derived from the original table generated
/// by Sarwate's algorithm. Slicing a 16-bit input and XORing the outputs
/// together will produce the same output as a byte-by-byte CRC loop with
/// fewer arithmetic and bit manipulation operations, at the cost of increased
/// memory consumed by the lookup tables. (Slicing-by-16 requires a 16KB table,
/// which is still small enough to fit in most processors' L1 cache.)
/// </remarks>
public sealed class BZip2Crc : IChecksum
{
#region Instance Fields
private const uint crcInit = 0xFFFFFFFF;
//const uint crcXor = 0x00000000;
private static readonly uint[] crcTable = CrcUtilities.GenerateSlicingLookupTable(0x04C11DB7, isReversed: false);
/// <summary>
/// The CRC data checksum so far.
/// </summary>
private uint checkValue;
#endregion Instance Fields
/// <summary>
/// Initialise a default instance of <see cref="BZip2Crc"></see>
/// </summary>
public BZip2Crc()
{
Reset();
}
/// <summary>
/// Resets the CRC data checksum as if no update was ever called.
/// </summary>
public void Reset()
{
checkValue = crcInit;
}
/// <summary>
/// Returns the CRC data checksum computed so far.
/// </summary>
/// <remarks>Reversed Out = true</remarks>
public long Value
{
get
{
// Technically, the output should be:
//return (long)(~checkValue ^ crcXor);
// but x ^ 0 = x, so there is no point in adding
// the XOR operation
return (long)(~checkValue);
}
}
/// <summary>
/// Updates the checksum with the int bval.
/// </summary>
/// <param name = "bval">
/// the byte is taken as the lower 8 bits of bval
/// </param>
/// <remarks>Reversed Data = false</remarks>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Update(int bval)
{
checkValue = unchecked(crcTable[(byte)(((checkValue >> 24) & 0xFF) ^ bval)] ^ (checkValue << 8));
}
/// <summary>
/// Updates the CRC data checksum with the bytes taken from
/// a block of data.
/// </summary>
/// <param name="buffer">Contains the data to update the CRC with.</param>
public void Update(byte[] buffer)
{
if (buffer == null)
{
throw new ArgumentNullException(nameof(buffer));
}
Update(buffer, 0, buffer.Length);
}
/// <summary>
/// Update CRC data checksum based on a portion of a block of data
/// </summary>
/// <param name = "segment">
/// The chunk of data to add
/// </param>
public void Update(ArraySegment<byte> segment)
{
Update(segment.Array, segment.Offset, segment.Count);
}
/// <summary>
/// Internal helper function for updating a block of data using slicing.
/// </summary>
/// <param name="data">The array containing the data to add</param>
/// <param name="offset">Range start for <paramref name="data"/> (inclusive)</param>
/// <param name="count">The number of bytes to checksum starting from <paramref name="offset"/></param>
private void Update(byte[] data, int offset, int count)
{
int remainder = count % CrcUtilities.SlicingDegree;
int end = offset + count - remainder;
while (offset != end)
{
checkValue = CrcUtilities.UpdateDataForNormalPoly(data, offset, crcTable, checkValue);
offset += CrcUtilities.SlicingDegree;
}
if (remainder != 0)
{
SlowUpdateLoop(data, offset, end + remainder);
}
}
/// <summary>
/// A non-inlined function for updating data that doesn't fit in a 16-byte
/// block. We don't expect to enter this function most of the time, and when
/// we do we're not here for long, so disabling inlining here improves
/// performance overall.
/// </summary>
/// <param name="data">The array containing the data to add</param>
/// <param name="offset">Range start for <paramref name="data"/> (inclusive)</param>
/// <param name="end">Range end for <paramref name="data"/> (exclusive)</param>
[MethodImpl(MethodImplOptions.NoInlining)]
private void SlowUpdateLoop(byte[] data, int offset, int end)
{
while (offset != end)
{
Update(data[offset++]);
}
}
}
}

View File

@@ -0,0 +1,173 @@
using System;
using System.Runtime.CompilerServices;
namespace ICSharpCode.SharpZipLib.Checksum
{
/// <summary>
/// CRC-32 with reversed data and unreversed output
/// </summary>
/// <remarks>
/// Generate a table for a byte-wise 32-bit CRC calculation on the polynomial:
/// x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x^1+x^0.
///
/// Polynomials over GF(2) are represented in binary, one bit per coefficient,
/// with the lowest powers in the most significant bit. Then adding polynomials
/// is just exclusive-or, and multiplying a polynomial by x is a right shift by
/// one. If we call the above polynomial p, and represent a byte as the
/// polynomial q, also with the lowest power in the most significant bit (so the
/// byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
/// where a mod b means the remainder after dividing a by b.
///
/// This calculation is done using the shift-register method of multiplying and
/// taking the remainder. The register is initialized to zero, and for each
/// incoming bit, x^32 is added mod p to the register if the bit is a one (where
/// x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
/// x (which is shifting right by one and adding x^32 mod p if the bit shifted
/// out is a one). We start with the highest power (least significant bit) of
/// q and repeat for all eight bits of q.
///
/// This implementation uses sixteen lookup tables stored in one linear array
/// to implement the slicing-by-16 algorithm, a variant of the slicing-by-8
/// algorithm described in this Intel white paper:
///
/// https://web.archive.org/web/20120722193753/http://download.intel.com/technology/comms/perfnet/download/slicing-by-8.pdf
///
/// The first lookup table is simply the CRC of all possible eight bit values.
/// Each successive lookup table is derived from the original table generated
/// by Sarwate's algorithm. Slicing a 16-bit input and XORing the outputs
/// together will produce the same output as a byte-by-byte CRC loop with
/// fewer arithmetic and bit manipulation operations, at the cost of increased
/// memory consumed by the lookup tables. (Slicing-by-16 requires a 16KB table,
/// which is still small enough to fit in most processors' L1 cache.)
/// </remarks>
public sealed class Crc32 : IChecksum
{
#region Instance Fields
private static readonly uint crcInit = 0xFFFFFFFF;
private static readonly uint crcXor = 0xFFFFFFFF;
private static readonly uint[] crcTable = CrcUtilities.GenerateSlicingLookupTable(0xEDB88320, isReversed: true);
/// <summary>
/// The CRC data checksum so far.
/// </summary>
private uint checkValue;
#endregion Instance Fields
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal static uint ComputeCrc32(uint oldCrc, byte bval)
{
return (uint)(Crc32.crcTable[(oldCrc ^ bval) & 0xFF] ^ (oldCrc >> 8));
}
/// <summary>
/// Initialise a default instance of <see cref="Crc32"></see>
/// </summary>
public Crc32()
{
Reset();
}
/// <summary>
/// Resets the CRC data checksum as if no update was ever called.
/// </summary>
public void Reset()
{
checkValue = crcInit;
}
/// <summary>
/// Returns the CRC data checksum computed so far.
/// </summary>
/// <remarks>Reversed Out = false</remarks>
public long Value
{
get
{
return (long)(checkValue ^ crcXor);
}
}
/// <summary>
/// Updates the checksum with the int bval.
/// </summary>
/// <param name = "bval">
/// the byte is taken as the lower 8 bits of bval
/// </param>
/// <remarks>Reversed Data = true</remarks>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Update(int bval)
{
checkValue = unchecked(crcTable[(checkValue ^ bval) & 0xFF] ^ (checkValue >> 8));
}
/// <summary>
/// Updates the CRC data checksum with the bytes taken from
/// a block of data.
/// </summary>
/// <param name="buffer">Contains the data to update the CRC with.</param>
public void Update(byte[] buffer)
{
if (buffer == null)
{
throw new ArgumentNullException(nameof(buffer));
}
Update(buffer, 0, buffer.Length);
}
/// <summary>
/// Update CRC data checksum based on a portion of a block of data
/// </summary>
/// <param name = "segment">
/// The chunk of data to add
/// </param>
public void Update(ArraySegment<byte> segment)
{
Update(segment.Array, segment.Offset, segment.Count);
}
/// <summary>
/// Internal helper function for updating a block of data using slicing.
/// </summary>
/// <param name="data">The array containing the data to add</param>
/// <param name="offset">Range start for <paramref name="data"/> (inclusive)</param>
/// <param name="count">The number of bytes to checksum starting from <paramref name="offset"/></param>
private void Update(byte[] data, int offset, int count)
{
int remainder = count % CrcUtilities.SlicingDegree;
int end = offset + count - remainder;
while (offset != end)
{
checkValue = CrcUtilities.UpdateDataForReversedPoly(data, offset, crcTable, checkValue);
offset += CrcUtilities.SlicingDegree;
}
if (remainder != 0)
{
SlowUpdateLoop(data, offset, end + remainder);
}
}
/// <summary>
/// A non-inlined function for updating data that doesn't fit in a 16-byte
/// block. We don't expect to enter this function most of the time, and when
/// we do we're not here for long, so disabling inlining here improves
/// performance overall.
/// </summary>
/// <param name="data">The array containing the data to add</param>
/// <param name="offset">Range start for <paramref name="data"/> (inclusive)</param>
/// <param name="end">Range end for <paramref name="data"/> (exclusive)</param>
[MethodImpl(MethodImplOptions.NoInlining)]
private void SlowUpdateLoop(byte[] data, int offset, int end)
{
while (offset != end)
{
Update(data[offset++]);
}
}
}
}

View File

@@ -0,0 +1,158 @@
using System.Runtime.CompilerServices;
namespace ICSharpCode.SharpZipLib.Checksum
{
internal static class CrcUtilities
{
/// <summary>
/// The number of slicing lookup tables to generate.
/// </summary>
internal const int SlicingDegree = 16;
/// <summary>
/// Generates multiple CRC lookup tables for a given polynomial, stored
/// in a linear array of uints. The first block (i.e. the first 256
/// elements) is the same as the byte-by-byte CRC lookup table.
/// </summary>
/// <param name="polynomial">The generating CRC polynomial</param>
/// <param name="isReversed">Whether the polynomial is in reversed bit order</param>
/// <returns>A linear array of 256 * <see cref="SlicingDegree"/> elements</returns>
/// <remarks>
/// This table could also be generated as a rectangular array, but the
/// JIT compiler generates slower code than if we use a linear array.
/// Known issue, see: https://github.com/dotnet/runtime/issues/30275
/// </remarks>
internal static uint[] GenerateSlicingLookupTable(uint polynomial, bool isReversed)
{
var table = new uint[256 * SlicingDegree];
uint one = isReversed ? 1 : (1U << 31);
for (int i = 0; i < 256; i++)
{
uint res = (uint)(isReversed ? i : i << 24);
for (int j = 0; j < SlicingDegree; j++)
{
for (int k = 0; k < 8; k++)
{
if (isReversed)
{
res = (res & one) == 1 ? polynomial ^ (res >> 1) : res >> 1;
}
else
{
res = (res & one) != 0 ? polynomial ^ (res << 1) : res << 1;
}
}
table[(256 * j) + i] = res;
}
}
return table;
}
/// <summary>
/// Mixes the first four bytes of input with <paramref name="checkValue"/>
/// using normal ordering before calling <see cref="UpdateDataCommon"/>.
/// </summary>
/// <param name="input">Array of data to checksum</param>
/// <param name="offset">Offset to start reading <paramref name="input"/> from</param>
/// <param name="crcTable">The table to use for slicing-by-16 lookup</param>
/// <param name="checkValue">Checksum state before this update call</param>
/// <returns>A new unfinalized checksum value</returns>
/// <seealso cref="UpdateDataForReversedPoly"/>
/// <remarks>
/// Assumes input[offset]..input[offset + 15] are valid array indexes.
/// For performance reasons, this must be checked by the caller.
/// </remarks>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal static uint UpdateDataForNormalPoly(byte[] input, int offset, uint[] crcTable, uint checkValue)
{
byte x1 = (byte)((byte)(checkValue >> 24) ^ input[offset]);
byte x2 = (byte)((byte)(checkValue >> 16) ^ input[offset + 1]);
byte x3 = (byte)((byte)(checkValue >> 8) ^ input[offset + 2]);
byte x4 = (byte)((byte)checkValue ^ input[offset + 3]);
return UpdateDataCommon(input, offset, crcTable, x1, x2, x3, x4);
}
/// <summary>
/// Mixes the first four bytes of input with <paramref name="checkValue"/>
/// using reflected ordering before calling <see cref="UpdateDataCommon"/>.
/// </summary>
/// <param name="input">Array of data to checksum</param>
/// <param name="offset">Offset to start reading <paramref name="input"/> from</param>
/// <param name="crcTable">The table to use for slicing-by-16 lookup</param>
/// <param name="checkValue">Checksum state before this update call</param>
/// <returns>A new unfinalized checksum value</returns>
/// <seealso cref="UpdateDataForNormalPoly"/>
/// <remarks>
/// Assumes input[offset]..input[offset + 15] are valid array indexes.
/// For performance reasons, this must be checked by the caller.
/// </remarks>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal static uint UpdateDataForReversedPoly(byte[] input, int offset, uint[] crcTable, uint checkValue)
{
byte x1 = (byte)((byte)checkValue ^ input[offset]);
byte x2 = (byte)((byte)(checkValue >>= 8) ^ input[offset + 1]);
byte x3 = (byte)((byte)(checkValue >>= 8) ^ input[offset + 2]);
byte x4 = (byte)((byte)(checkValue >>= 8) ^ input[offset + 3]);
return UpdateDataCommon(input, offset, crcTable, x1, x2, x3, x4);
}
/// <summary>
/// A shared method for updating an unfinalized CRC checksum using slicing-by-16.
/// </summary>
/// <param name="input">Array of data to checksum</param>
/// <param name="offset">Offset to start reading <paramref name="input"/> from</param>
/// <param name="crcTable">The table to use for slicing-by-16 lookup</param>
/// <param name="x1">First byte of input after mixing with the old CRC</param>
/// <param name="x2">Second byte of input after mixing with the old CRC</param>
/// <param name="x3">Third byte of input after mixing with the old CRC</param>
/// <param name="x4">Fourth byte of input after mixing with the old CRC</param>
/// <returns>A new unfinalized checksum value</returns>
/// <remarks>
/// <para>
/// Even though the first four bytes of input are fed in as arguments,
/// <paramref name="offset"/> should be the same value passed to this
/// function's caller (either <see cref="UpdateDataForNormalPoly"/> or
/// <see cref="UpdateDataForReversedPoly"/>). This method will get inlined
/// into both functions, so using the same offset produces faster code.
/// </para>
/// <para>
/// Because most processors running C# have some kind of instruction-level
/// parallelism, the order of XOR operations can affect performance. This
/// ordering assumes that the assembly code generated by the just-in-time
/// compiler will emit a bunch of arithmetic operations for checking array
/// bounds. Then it opportunistically XORs a1 and a2 to keep the processor
/// busy while those other parts of the pipeline handle the range check
/// calculations.
/// </para>
/// </remarks>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static uint UpdateDataCommon(byte[] input, int offset, uint[] crcTable, byte x1, byte x2, byte x3, byte x4)
{
uint result;
uint a1 = crcTable[x1 + 3840] ^ crcTable[x2 + 3584];
uint a2 = crcTable[x3 + 3328] ^ crcTable[x4 + 3072];
result = crcTable[input[offset + 4] + 2816];
result ^= crcTable[input[offset + 5] + 2560];
a1 ^= crcTable[input[offset + 9] + 1536];
result ^= crcTable[input[offset + 6] + 2304];
result ^= crcTable[input[offset + 7] + 2048];
result ^= crcTable[input[offset + 8] + 1792];
a2 ^= crcTable[input[offset + 13] + 512];
result ^= crcTable[input[offset + 10] + 1280];
result ^= crcTable[input[offset + 11] + 1024];
result ^= crcTable[input[offset + 12] + 768];
result ^= a1;
result ^= crcTable[input[offset + 14] + 256];
result ^= crcTable[input[offset + 15]];
result ^= a2;
return result;
}
}
}

View File

@@ -0,0 +1,51 @@
using System;
namespace ICSharpCode.SharpZipLib.Checksum
{
/// <summary>
/// Interface to compute a data checksum used by checked input/output streams.
/// A data checksum can be updated by one byte or with a byte array. After each
/// update the value of the current checksum can be returned by calling
/// <code>getValue</code>. The complete checksum object can also be reset
/// so it can be used again with new data.
/// </summary>
public interface IChecksum
{
/// <summary>
/// Resets the data checksum as if no update was ever called.
/// </summary>
void Reset();
/// <summary>
/// Returns the data checksum computed so far.
/// </summary>
long Value
{
get;
}
/// <summary>
/// Adds one byte to the data checksum.
/// </summary>
/// <param name = "bval">
/// the data value to add. The high byte of the int is ignored.
/// </param>
void Update(int bval);
/// <summary>
/// Updates the data checksum with the bytes taken from the array.
/// </summary>
/// <param name="buffer">
/// buffer an array of bytes
/// </param>
void Update(byte[] buffer);
/// <summary>
/// Adds the byte array to the data checksum.
/// </summary>
/// <param name = "segment">
/// The chunk of data to add
/// </param>
void Update(ArraySegment<byte> segment);
}
}