初始化上传

This commit is contained in:
2025-08-26 08:37:44 +08:00
commit 31d81b91b6
448 changed files with 80981 additions and 0 deletions

View File

@@ -0,0 +1,487 @@
using ICSharpCode.SharpZipLib.Checksum;
using System;
using System.Security.Cryptography;
namespace ICSharpCode.SharpZipLib.Encryption
{
/// <summary>
/// PkzipClassic embodies the classic or original encryption facilities used in Pkzip archives.
/// While it has been superceded by more recent and more powerful algorithms, its still in use and
/// is viable for preventing casual snooping
/// </summary>
public abstract class PkzipClassic : SymmetricAlgorithm
{
/// <summary>
/// Generates new encryption keys based on given seed
/// </summary>
/// <param name="seed">The seed value to initialise keys with.</param>
/// <returns>A new key value.</returns>
static public byte[] GenerateKeys(byte[] seed)
{
if (seed == null)
{
throw new ArgumentNullException(nameof(seed));
}
if (seed.Length == 0)
{
throw new ArgumentException("Length is zero", nameof(seed));
}
uint[] newKeys = {
0x12345678,
0x23456789,
0x34567890
};
for (int i = 0; i < seed.Length; ++i)
{
newKeys[0] = Crc32.ComputeCrc32(newKeys[0], seed[i]);
newKeys[1] = newKeys[1] + (byte)newKeys[0];
newKeys[1] = newKeys[1] * 134775813 + 1;
newKeys[2] = Crc32.ComputeCrc32(newKeys[2], (byte)(newKeys[1] >> 24));
}
byte[] result = new byte[12];
result[0] = (byte)(newKeys[0] & 0xff);
result[1] = (byte)((newKeys[0] >> 8) & 0xff);
result[2] = (byte)((newKeys[0] >> 16) & 0xff);
result[3] = (byte)((newKeys[0] >> 24) & 0xff);
result[4] = (byte)(newKeys[1] & 0xff);
result[5] = (byte)((newKeys[1] >> 8) & 0xff);
result[6] = (byte)((newKeys[1] >> 16) & 0xff);
result[7] = (byte)((newKeys[1] >> 24) & 0xff);
result[8] = (byte)(newKeys[2] & 0xff);
result[9] = (byte)((newKeys[2] >> 8) & 0xff);
result[10] = (byte)((newKeys[2] >> 16) & 0xff);
result[11] = (byte)((newKeys[2] >> 24) & 0xff);
return result;
}
}
/// <summary>
/// PkzipClassicCryptoBase provides the low level facilities for encryption
/// and decryption using the PkzipClassic algorithm.
/// </summary>
internal class PkzipClassicCryptoBase
{
/// <summary>
/// Transform a single byte
/// </summary>
/// <returns>
/// The transformed value
/// </returns>
protected byte TransformByte()
{
uint temp = ((keys[2] & 0xFFFF) | 2);
return (byte)((temp * (temp ^ 1)) >> 8);
}
/// <summary>
/// Set the key schedule for encryption/decryption.
/// </summary>
/// <param name="keyData">The data use to set the keys from.</param>
protected void SetKeys(byte[] keyData)
{
if (keyData == null)
{
throw new ArgumentNullException(nameof(keyData));
}
if (keyData.Length != 12)
{
throw new InvalidOperationException("Key length is not valid");
}
keys = new uint[3];
keys[0] = (uint)((keyData[3] << 24) | (keyData[2] << 16) | (keyData[1] << 8) | keyData[0]);
keys[1] = (uint)((keyData[7] << 24) | (keyData[6] << 16) | (keyData[5] << 8) | keyData[4]);
keys[2] = (uint)((keyData[11] << 24) | (keyData[10] << 16) | (keyData[9] << 8) | keyData[8]);
}
/// <summary>
/// Update encryption keys
/// </summary>
protected void UpdateKeys(byte ch)
{
keys[0] = Crc32.ComputeCrc32(keys[0], ch);
keys[1] = keys[1] + (byte)keys[0];
keys[1] = keys[1] * 134775813 + 1;
keys[2] = Crc32.ComputeCrc32(keys[2], (byte)(keys[1] >> 24));
}
/// <summary>
/// Reset the internal state.
/// </summary>
protected void Reset()
{
keys[0] = 0;
keys[1] = 0;
keys[2] = 0;
}
#region Instance Fields
private uint[] keys;
#endregion Instance Fields
}
/// <summary>
/// PkzipClassic CryptoTransform for encryption.
/// </summary>
internal class PkzipClassicEncryptCryptoTransform : PkzipClassicCryptoBase, ICryptoTransform
{
/// <summary>
/// Initialise a new instance of <see cref="PkzipClassicEncryptCryptoTransform"></see>
/// </summary>
/// <param name="keyBlock">The key block to use.</param>
internal PkzipClassicEncryptCryptoTransform(byte[] keyBlock)
{
SetKeys(keyBlock);
}
#region ICryptoTransform Members
/// <summary>
/// Transforms the specified region of the specified byte array.
/// </summary>
/// <param name="inputBuffer">The input for which to compute the transform.</param>
/// <param name="inputOffset">The offset into the byte array from which to begin using data.</param>
/// <param name="inputCount">The number of bytes in the byte array to use as data.</param>
/// <returns>The computed transform.</returns>
public byte[] TransformFinalBlock(byte[] inputBuffer, int inputOffset, int inputCount)
{
byte[] result = new byte[inputCount];
TransformBlock(inputBuffer, inputOffset, inputCount, result, 0);
return result;
}
/// <summary>
/// Transforms the specified region of the input byte array and copies
/// the resulting transform to the specified region of the output byte array.
/// </summary>
/// <param name="inputBuffer">The input for which to compute the transform.</param>
/// <param name="inputOffset">The offset into the input byte array from which to begin using data.</param>
/// <param name="inputCount">The number of bytes in the input byte array to use as data.</param>
/// <param name="outputBuffer">The output to which to write the transform.</param>
/// <param name="outputOffset">The offset into the output byte array from which to begin writing data.</param>
/// <returns>The number of bytes written.</returns>
public int TransformBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset)
{
for (int i = inputOffset; i < inputOffset + inputCount; ++i)
{
byte oldbyte = inputBuffer[i];
outputBuffer[outputOffset++] = (byte)(inputBuffer[i] ^ TransformByte());
UpdateKeys(oldbyte);
}
return inputCount;
}
/// <summary>
/// Gets a value indicating whether the current transform can be reused.
/// </summary>
public bool CanReuseTransform
{
get
{
return true;
}
}
/// <summary>
/// Gets the size of the input data blocks in bytes.
/// </summary>
public int InputBlockSize
{
get
{
return 1;
}
}
/// <summary>
/// Gets the size of the output data blocks in bytes.
/// </summary>
public int OutputBlockSize
{
get
{
return 1;
}
}
/// <summary>
/// Gets a value indicating whether multiple blocks can be transformed.
/// </summary>
public bool CanTransformMultipleBlocks
{
get
{
return true;
}
}
#endregion ICryptoTransform Members
#region IDisposable Members
/// <summary>
/// Cleanup internal state.
/// </summary>
public void Dispose()
{
Reset();
}
#endregion IDisposable Members
}
/// <summary>
/// PkzipClassic CryptoTransform for decryption.
/// </summary>
internal class PkzipClassicDecryptCryptoTransform : PkzipClassicCryptoBase, ICryptoTransform
{
/// <summary>
/// Initialise a new instance of <see cref="PkzipClassicDecryptCryptoTransform"></see>.
/// </summary>
/// <param name="keyBlock">The key block to decrypt with.</param>
internal PkzipClassicDecryptCryptoTransform(byte[] keyBlock)
{
SetKeys(keyBlock);
}
#region ICryptoTransform Members
/// <summary>
/// Transforms the specified region of the specified byte array.
/// </summary>
/// <param name="inputBuffer">The input for which to compute the transform.</param>
/// <param name="inputOffset">The offset into the byte array from which to begin using data.</param>
/// <param name="inputCount">The number of bytes in the byte array to use as data.</param>
/// <returns>The computed transform.</returns>
public byte[] TransformFinalBlock(byte[] inputBuffer, int inputOffset, int inputCount)
{
byte[] result = new byte[inputCount];
TransformBlock(inputBuffer, inputOffset, inputCount, result, 0);
return result;
}
/// <summary>
/// Transforms the specified region of the input byte array and copies
/// the resulting transform to the specified region of the output byte array.
/// </summary>
/// <param name="inputBuffer">The input for which to compute the transform.</param>
/// <param name="inputOffset">The offset into the input byte array from which to begin using data.</param>
/// <param name="inputCount">The number of bytes in the input byte array to use as data.</param>
/// <param name="outputBuffer">The output to which to write the transform.</param>
/// <param name="outputOffset">The offset into the output byte array from which to begin writing data.</param>
/// <returns>The number of bytes written.</returns>
public int TransformBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset)
{
for (int i = inputOffset; i < inputOffset + inputCount; ++i)
{
var newByte = (byte)(inputBuffer[i] ^ TransformByte());
outputBuffer[outputOffset++] = newByte;
UpdateKeys(newByte);
}
return inputCount;
}
/// <summary>
/// Gets a value indicating whether the current transform can be reused.
/// </summary>
public bool CanReuseTransform
{
get
{
return true;
}
}
/// <summary>
/// Gets the size of the input data blocks in bytes.
/// </summary>
public int InputBlockSize
{
get
{
return 1;
}
}
/// <summary>
/// Gets the size of the output data blocks in bytes.
/// </summary>
public int OutputBlockSize
{
get
{
return 1;
}
}
/// <summary>
/// Gets a value indicating whether multiple blocks can be transformed.
/// </summary>
public bool CanTransformMultipleBlocks
{
get
{
return true;
}
}
#endregion ICryptoTransform Members
#region IDisposable Members
/// <summary>
/// Cleanup internal state.
/// </summary>
public void Dispose()
{
Reset();
}
#endregion IDisposable Members
}
/// <summary>
/// Defines a wrapper object to access the Pkzip algorithm.
/// This class cannot be inherited.
/// </summary>
public sealed class PkzipClassicManaged : PkzipClassic
{
/// <summary>
/// Get / set the applicable block size in bits.
/// </summary>
/// <remarks>The only valid block size is 8.</remarks>
public override int BlockSize
{
get
{
return 8;
}
set
{
if (value != 8)
{
throw new CryptographicException("Block size is invalid");
}
}
}
/// <summary>
/// Get an array of legal <see cref="KeySizes">key sizes.</see>
/// </summary>
public override KeySizes[] LegalKeySizes
{
get
{
KeySizes[] keySizes = new KeySizes[1];
keySizes[0] = new KeySizes(12 * 8, 12 * 8, 0);
return keySizes;
}
}
/// <summary>
/// Generate an initial vector.
/// </summary>
public override void GenerateIV()
{
// Do nothing.
}
/// <summary>
/// Get an array of legal <see cref="KeySizes">block sizes</see>.
/// </summary>
public override KeySizes[] LegalBlockSizes
{
get
{
KeySizes[] keySizes = new KeySizes[1];
keySizes[0] = new KeySizes(1 * 8, 1 * 8, 0);
return keySizes;
}
}
/// <summary>
/// Get / set the key value applicable.
/// </summary>
public override byte[] Key
{
get
{
if (key_ == null)
{
GenerateKey();
}
return (byte[])key_.Clone();
}
set
{
if (value == null)
{
throw new ArgumentNullException(nameof(value));
}
if (value.Length != 12)
{
throw new CryptographicException("Key size is illegal");
}
key_ = (byte[])value.Clone();
}
}
/// <summary>
/// Generate a new random key.
/// </summary>
public override void GenerateKey()
{
key_ = new byte[12];
using (var rng = new RNGCryptoServiceProvider())
{
rng.GetBytes(key_);
}
}
/// <summary>
/// Create an encryptor.
/// </summary>
/// <param name="rgbKey">The key to use for this encryptor.</param>
/// <param name="rgbIV">Initialisation vector for the new encryptor.</param>
/// <returns>Returns a new PkzipClassic encryptor</returns>
public override ICryptoTransform CreateEncryptor(
byte[] rgbKey,
byte[] rgbIV)
{
key_ = rgbKey;
return new PkzipClassicEncryptCryptoTransform(Key);
}
/// <summary>
/// Create a decryptor.
/// </summary>
/// <param name="rgbKey">Keys to use for this new decryptor.</param>
/// <param name="rgbIV">Initialisation vector for the new decryptor.</param>
/// <returns>Returns a new decryptor.</returns>
public override ICryptoTransform CreateDecryptor(
byte[] rgbKey,
byte[] rgbIV)
{
key_ = rgbKey;
return new PkzipClassicDecryptCryptoTransform(Key);
}
#region Instance Fields
private byte[] key_;
#endregion Instance Fields
}
}

View File

@@ -0,0 +1,230 @@
using System;
using System.IO;
using System.Security.Cryptography;
using System.Threading;
using System.Threading.Tasks;
using ICSharpCode.SharpZipLib.Core;
using ICSharpCode.SharpZipLib.Zip;
namespace ICSharpCode.SharpZipLib.Encryption
{
/// <summary>
/// Encrypts and decrypts AES ZIP
/// </summary>
/// <remarks>
/// Based on information from http://www.winzip.com/aes_info.htm
/// and http://www.gladman.me.uk/cryptography_technology/fileencrypt/
/// </remarks>
internal class ZipAESStream : CryptoStream
{
/// <summary>
/// Constructor
/// </summary>
/// <param name="stream">The stream on which to perform the cryptographic transformation.</param>
/// <param name="transform">Instance of ZipAESTransform</param>
/// <param name="mode">Read or Write</param>
public ZipAESStream(Stream stream, ZipAESTransform transform, CryptoStreamMode mode)
: base(stream, transform, mode)
{
_stream = stream;
_transform = transform;
_slideBuffer = new byte[1024];
// mode:
// CryptoStreamMode.Read means we read from "stream" and pass decrypted to our Read() method.
// Write bypasses this stream and uses the Transform directly.
if (mode != CryptoStreamMode.Read)
{
throw new Exception("ZipAESStream only for read");
}
}
// The final n bytes of the AES stream contain the Auth Code.
private const int AUTH_CODE_LENGTH = 10;
// Blocksize is always 16 here, even for AES-256 which has transform.InputBlockSize of 32.
private const int CRYPTO_BLOCK_SIZE = 16;
// total length of block + auth code
private const int BLOCK_AND_AUTH = CRYPTO_BLOCK_SIZE + AUTH_CODE_LENGTH;
private Stream _stream;
private ZipAESTransform _transform;
private byte[] _slideBuffer;
private int _slideBufStartPos;
private int _slideBufFreePos;
// Buffer block transforms to enable partial reads
private byte[] _transformBuffer = null;// new byte[CRYPTO_BLOCK_SIZE];
private int _transformBufferFreePos;
private int _transformBufferStartPos;
// Do we have some buffered data available?
private bool HasBufferedData =>_transformBuffer != null && _transformBufferStartPos < _transformBufferFreePos;
/// <summary>
/// Reads a sequence of bytes from the current CryptoStream into buffer,
/// and advances the position within the stream by the number of bytes read.
/// </summary>
public override int Read(byte[] buffer, int offset, int count)
{
// Nothing to do
if (count == 0)
return 0;
// If we have buffered data, read that first
int nBytes = 0;
if (HasBufferedData)
{
nBytes = ReadBufferedData(buffer, offset, count);
// Read all requested data from the buffer
if (nBytes == count)
return nBytes;
offset += nBytes;
count -= nBytes;
}
// Read more data from the input, if available
if (_slideBuffer != null)
nBytes += ReadAndTransform(buffer, offset, count);
return nBytes;
}
/// <inheritdoc/>
public override Task<int> ReadAsync(byte[] buffer, int offset, int count, CancellationToken cancellationToken)
{
var readCount = Read(buffer, offset, count);
return Task.FromResult(readCount);
}
// Read data from the underlying stream and decrypt it
private int ReadAndTransform(byte[] buffer, int offset, int count)
{
int nBytes = 0;
while (nBytes < count)
{
int bytesLeftToRead = count - nBytes;
// Calculate buffer quantities vs read-ahead size, and check for sufficient free space
int byteCount = _slideBufFreePos - _slideBufStartPos;
// Need to handle final block and Auth Code specially, but don't know total data length.
// Maintain a read-ahead equal to the length of (crypto block + Auth Code).
// When that runs out we can detect these final sections.
int lengthToRead = BLOCK_AND_AUTH - byteCount;
if (_slideBuffer.Length - _slideBufFreePos < lengthToRead)
{
// Shift the data to the beginning of the buffer
int iTo = 0;
for (int iFrom = _slideBufStartPos; iFrom < _slideBufFreePos; iFrom++, iTo++)
{
_slideBuffer[iTo] = _slideBuffer[iFrom];
}
_slideBufFreePos -= _slideBufStartPos; // Note the -=
_slideBufStartPos = 0;
}
int obtained = StreamUtils.ReadRequestedBytes(_stream, _slideBuffer, _slideBufFreePos, lengthToRead);
_slideBufFreePos += obtained;
// Recalculate how much data we now have
byteCount = _slideBufFreePos - _slideBufStartPos;
if (byteCount >= BLOCK_AND_AUTH)
{
var read = TransformAndBufferBlock(buffer, offset, bytesLeftToRead, CRYPTO_BLOCK_SIZE);
nBytes += read;
offset += read;
}
else
{
// Last round.
if (byteCount > AUTH_CODE_LENGTH)
{
// At least one byte of data plus auth code
int finalBlock = byteCount - AUTH_CODE_LENGTH;
nBytes += TransformAndBufferBlock(buffer, offset, bytesLeftToRead, finalBlock);
}
else if (byteCount < AUTH_CODE_LENGTH)
throw new ZipException("Internal error missed auth code"); // Coding bug
// Final block done. Check Auth code.
byte[] calcAuthCode = _transform.GetAuthCode();
for (int i = 0; i < AUTH_CODE_LENGTH; i++)
{
if (calcAuthCode[i] != _slideBuffer[_slideBufStartPos + i])
{
throw new ZipException("AES Authentication Code does not match. This is a super-CRC check on the data in the file after compression and encryption. \r\n"
+ "The file may be damaged.");
}
}
// don't need this any more, so use it as a 'complete' flag
_slideBuffer = null;
break; // Reached the auth code
}
}
return nBytes;
}
// read some buffered data
private int ReadBufferedData(byte[] buffer, int offset, int count)
{
int copyCount = Math.Min(count, _transformBufferFreePos - _transformBufferStartPos);
Array.Copy(_transformBuffer, _transformBufferStartPos, buffer, offset, copyCount);
_transformBufferStartPos += copyCount;
return copyCount;
}
// Perform the crypto transform, and buffer the data if less than one block has been requested.
private int TransformAndBufferBlock(byte[] buffer, int offset, int count, int blockSize)
{
// If the requested data is greater than one block, transform it directly into the output
// If it's smaller, do it into a temporary buffer and copy the requested part
bool bufferRequired = (blockSize > count);
if (bufferRequired && _transformBuffer == null)
_transformBuffer = new byte[CRYPTO_BLOCK_SIZE];
var targetBuffer = bufferRequired ? _transformBuffer : buffer;
var targetOffset = bufferRequired ? 0 : offset;
// Transform the data
_transform.TransformBlock(_slideBuffer,
_slideBufStartPos,
blockSize,
targetBuffer,
targetOffset);
_slideBufStartPos += blockSize;
if (!bufferRequired)
{
return blockSize;
}
else
{
Array.Copy(_transformBuffer, 0, buffer, offset, count);
_transformBufferStartPos = count;
_transformBufferFreePos = blockSize;
return count;
}
}
/// <summary>
/// Writes a sequence of bytes to the current stream and advances the current position within this stream by the number of bytes written.
/// </summary>
/// <param name="buffer">An array of bytes. This method copies count bytes from buffer to the current stream. </param>
/// <param name="offset">The byte offset in buffer at which to begin copying bytes to the current stream. </param>
/// <param name="count">The number of bytes to be written to the current stream. </param>
public override void Write(byte[] buffer, int offset, int count)
{
// ZipAESStream is used for reading but not for writing. Writing uses the ZipAESTransform directly.
throw new NotImplementedException();
}
}
}

View File

@@ -0,0 +1,222 @@
using System;
using System.Security.Cryptography;
using ICSharpCode.SharpZipLib.Core;
namespace ICSharpCode.SharpZipLib.Encryption
{
/// <summary>
/// Transforms stream using AES in CTR mode
/// </summary>
internal class ZipAESTransform : ICryptoTransform
{
class IncrementalHash : HMACSHA1
{
bool _finalised;
public IncrementalHash(byte[] key) : base(key) { }
public static IncrementalHash CreateHMAC(string n, byte[] key) => new IncrementalHash(key);
public void AppendData(byte[] buffer, int offset, int count) => TransformBlock(buffer, offset, count, buffer, offset);
public byte[] GetHashAndReset()
{
if (!_finalised)
{
byte[] dummy = new byte[0];
TransformFinalBlock(dummy, 0, 0);
_finalised = true;
}
return Hash;
}
}
static class HashAlgorithmName
{
public static string SHA1 = null;
}
private const int PWD_VER_LENGTH = 2;
// WinZip use iteration count of 1000 for PBKDF2 key generation
private const int KEY_ROUNDS = 1000;
// For 128-bit AES (16 bytes) the encryption is implemented as expected.
// For 256-bit AES (32 bytes) WinZip do full 256 bit AES of the nonce to create the encryption
// block but use only the first 16 bytes of it, and discard the second half.
private const int ENCRYPT_BLOCK = 16;
private int _blockSize;
private readonly ICryptoTransform _encryptor;
private readonly byte[] _counterNonce;
private byte[] _encryptBuffer;
private int _encrPos;
private byte[] _pwdVerifier;
private IncrementalHash _hmacsha1;
private byte[] _authCode = null;
private bool _writeMode;
/// <summary>
/// Constructor.
/// </summary>
/// <param name="key">Password string</param>
/// <param name="saltBytes">Random bytes, length depends on encryption strength.
/// 128 bits = 8 bytes, 192 bits = 12 bytes, 256 bits = 16 bytes.</param>
/// <param name="blockSize">The encryption strength, in bytes eg 16 for 128 bits.</param>
/// <param name="writeMode">True when creating a zip, false when reading. For the AuthCode.</param>
///
public ZipAESTransform(string key, byte[] saltBytes, int blockSize, bool writeMode)
{
if (blockSize != 16 && blockSize != 32) // 24 valid for AES but not supported by Winzip
throw new Exception("Invalid blocksize " + blockSize + ". Must be 16 or 32.");
if (saltBytes.Length != blockSize / 2)
throw new Exception("Invalid salt len. Must be " + blockSize / 2 + " for blocksize " + blockSize);
// initialise the encryption buffer and buffer pos
_blockSize = blockSize;
_encryptBuffer = new byte[_blockSize];
_encrPos = ENCRYPT_BLOCK;
// Performs the equivalent of derive_key in Dr Brian Gladman's pwd2key.c
var pdb = new Rfc2898DeriveBytes(key, saltBytes, KEY_ROUNDS);
var rm = Aes.Create();
rm.Mode = CipherMode.ECB; // No feedback from cipher for CTR mode
_counterNonce = new byte[_blockSize];
byte[] key1bytes = pdb.GetBytes(_blockSize);
byte[] key2bytes = pdb.GetBytes(_blockSize);
// Use empty IV for AES
_encryptor = rm.CreateEncryptor(key1bytes, new byte[16]);
_pwdVerifier = pdb.GetBytes(PWD_VER_LENGTH);
//
_hmacsha1 = IncrementalHash.CreateHMAC(HashAlgorithmName.SHA1, key2bytes);
_writeMode = writeMode;
}
/// <summary>
/// Implement the ICryptoTransform method.
/// </summary>
public int TransformBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset)
{
// Pass the data stream to the hash algorithm for generating the Auth Code.
// This does not change the inputBuffer. Do this before decryption for read mode.
if (!_writeMode)
{
_hmacsha1.AppendData(inputBuffer, inputOffset, inputCount);
}
// Encrypt with AES in CTR mode. Regards to Dr Brian Gladman for this.
int ix = 0;
while (ix < inputCount)
{
if (_encrPos == ENCRYPT_BLOCK)
{
/* increment encryption nonce */
int j = 0;
while (++_counterNonce[j] == 0)
{
++j;
}
/* encrypt the nonce to form next xor buffer */
_encryptor.TransformBlock(_counterNonce, 0, _blockSize, _encryptBuffer, 0);
_encrPos = 0;
}
outputBuffer[ix + outputOffset] = (byte)(inputBuffer[ix + inputOffset] ^ _encryptBuffer[_encrPos++]);
//
ix++;
}
if (_writeMode)
{
// This does not change the buffer.
_hmacsha1.AppendData(outputBuffer, outputOffset, inputCount);
}
return inputCount;
}
/// <summary>
/// Returns the 2 byte password verifier
/// </summary>
public byte[] PwdVerifier
{
get
{
return _pwdVerifier;
}
}
/// <summary>
/// Returns the 10 byte AUTH CODE to be checked or appended immediately following the AES data stream.
/// </summary>
public byte[] GetAuthCode()
{
if (_authCode == null)
{
_authCode = _hmacsha1.GetHashAndReset();
}
return _authCode;
}
#region ICryptoTransform Members
/// <summary>
/// Not implemented.
/// </summary>
public byte[] TransformFinalBlock(byte[] inputBuffer, int inputOffset, int inputCount)
{
if (inputCount > 0)
{
throw new NotImplementedException("TransformFinalBlock is not implemented and inputCount is greater than 0");
}
return Empty.Array<byte>();
}
/// <summary>
/// Gets the size of the input data blocks in bytes.
/// </summary>
public int InputBlockSize
{
get
{
return _blockSize;
}
}
/// <summary>
/// Gets the size of the output data blocks in bytes.
/// </summary>
public int OutputBlockSize
{
get
{
return _blockSize;
}
}
/// <summary>
/// Gets a value indicating whether multiple blocks can be transformed.
/// </summary>
public bool CanTransformMultipleBlocks
{
get
{
return true;
}
}
/// <summary>
/// Gets a value indicating whether the current transform can be reused.
/// </summary>
public bool CanReuseTransform
{
get
{
return true;
}
}
/// <summary>
/// Cleanup internal state.
/// </summary>
public void Dispose()
{
_encryptor.Dispose();
}
#endregion ICryptoTransform Members
}
}