初始化上传
This commit is contained in:
@@ -0,0 +1,959 @@
|
||||
using System;
|
||||
|
||||
namespace ICSharpCode.SharpZipLib.Zip.Compression
|
||||
{
|
||||
/// <summary>
|
||||
/// This is the DeflaterHuffman class.
|
||||
///
|
||||
/// This class is <i>not</i> thread safe. This is inherent in the API, due
|
||||
/// to the split of Deflate and SetInput.
|
||||
///
|
||||
/// author of the original java version : Jochen Hoenicke
|
||||
/// </summary>
|
||||
public class DeflaterHuffman
|
||||
{
|
||||
private const int BUFSIZE = 1 << (DeflaterConstants.DEFAULT_MEM_LEVEL + 6);
|
||||
private const int LITERAL_NUM = 286;
|
||||
|
||||
// Number of distance codes
|
||||
private const int DIST_NUM = 30;
|
||||
|
||||
// Number of codes used to transfer bit lengths
|
||||
private const int BITLEN_NUM = 19;
|
||||
|
||||
// repeat previous bit length 3-6 times (2 bits of repeat count)
|
||||
private const int REP_3_6 = 16;
|
||||
|
||||
// repeat a zero length 3-10 times (3 bits of repeat count)
|
||||
private const int REP_3_10 = 17;
|
||||
|
||||
// repeat a zero length 11-138 times (7 bits of repeat count)
|
||||
private const int REP_11_138 = 18;
|
||||
|
||||
private const int EOF_SYMBOL = 256;
|
||||
|
||||
// The lengths of the bit length codes are sent in order of decreasing
|
||||
// probability, to avoid transmitting the lengths for unused bit length codes.
|
||||
private static readonly int[] BL_ORDER = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
|
||||
|
||||
private static readonly byte[] bit4Reverse = {
|
||||
0,
|
||||
8,
|
||||
4,
|
||||
12,
|
||||
2,
|
||||
10,
|
||||
6,
|
||||
14,
|
||||
1,
|
||||
9,
|
||||
5,
|
||||
13,
|
||||
3,
|
||||
11,
|
||||
7,
|
||||
15
|
||||
};
|
||||
|
||||
private static short[] staticLCodes;
|
||||
private static byte[] staticLLength;
|
||||
private static short[] staticDCodes;
|
||||
private static byte[] staticDLength;
|
||||
|
||||
private class Tree
|
||||
{
|
||||
#region Instance Fields
|
||||
|
||||
public short[] freqs;
|
||||
|
||||
public byte[] length;
|
||||
|
||||
public int minNumCodes;
|
||||
|
||||
public int numCodes;
|
||||
|
||||
private short[] codes;
|
||||
private readonly int[] bl_counts;
|
||||
private readonly int maxLength;
|
||||
private DeflaterHuffman dh;
|
||||
|
||||
#endregion Instance Fields
|
||||
|
||||
#region Constructors
|
||||
|
||||
public Tree(DeflaterHuffman dh, int elems, int minCodes, int maxLength)
|
||||
{
|
||||
this.dh = dh;
|
||||
this.minNumCodes = minCodes;
|
||||
this.maxLength = maxLength;
|
||||
freqs = new short[elems];
|
||||
bl_counts = new int[maxLength];
|
||||
}
|
||||
|
||||
#endregion Constructors
|
||||
|
||||
/// <summary>
|
||||
/// Resets the internal state of the tree
|
||||
/// </summary>
|
||||
public void Reset()
|
||||
{
|
||||
for (int i = 0; i < freqs.Length; i++)
|
||||
{
|
||||
freqs[i] = 0;
|
||||
}
|
||||
codes = null;
|
||||
length = null;
|
||||
}
|
||||
|
||||
public void WriteSymbol(int code)
|
||||
{
|
||||
// if (DeflaterConstants.DEBUGGING) {
|
||||
// freqs[code]--;
|
||||
// // Console.Write("writeSymbol("+freqs.length+","+code+"): ");
|
||||
// }
|
||||
dh.pending.WriteBits(codes[code] & 0xffff, length[code]);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Check that all frequencies are zero
|
||||
/// </summary>
|
||||
/// <exception cref="SharpZipBaseException">
|
||||
/// At least one frequency is non-zero
|
||||
/// </exception>
|
||||
public void CheckEmpty()
|
||||
{
|
||||
bool empty = true;
|
||||
for (int i = 0; i < freqs.Length; i++)
|
||||
{
|
||||
empty &= freqs[i] == 0;
|
||||
}
|
||||
|
||||
if (!empty)
|
||||
{
|
||||
throw new SharpZipBaseException("!Empty");
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Set static codes and length
|
||||
/// </summary>
|
||||
/// <param name="staticCodes">new codes</param>
|
||||
/// <param name="staticLengths">length for new codes</param>
|
||||
public void SetStaticCodes(short[] staticCodes, byte[] staticLengths)
|
||||
{
|
||||
codes = staticCodes;
|
||||
length = staticLengths;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Build dynamic codes and lengths
|
||||
/// </summary>
|
||||
public void BuildCodes()
|
||||
{
|
||||
int numSymbols = freqs.Length;
|
||||
int[] nextCode = new int[maxLength];
|
||||
int code = 0;
|
||||
|
||||
codes = new short[freqs.Length];
|
||||
|
||||
// if (DeflaterConstants.DEBUGGING) {
|
||||
// //Console.WriteLine("buildCodes: "+freqs.Length);
|
||||
// }
|
||||
|
||||
for (int bits = 0; bits < maxLength; bits++)
|
||||
{
|
||||
nextCode[bits] = code;
|
||||
code += bl_counts[bits] << (15 - bits);
|
||||
|
||||
// if (DeflaterConstants.DEBUGGING) {
|
||||
// //Console.WriteLine("bits: " + ( bits + 1) + " count: " + bl_counts[bits]
|
||||
// +" nextCode: "+code);
|
||||
// }
|
||||
}
|
||||
|
||||
#if DebugDeflation
|
||||
if ( DeflaterConstants.DEBUGGING && (code != 65536) )
|
||||
{
|
||||
throw new SharpZipBaseException("Inconsistent bl_counts!");
|
||||
}
|
||||
#endif
|
||||
for (int i = 0; i < numCodes; i++)
|
||||
{
|
||||
int bits = length[i];
|
||||
if (bits > 0)
|
||||
{
|
||||
// if (DeflaterConstants.DEBUGGING) {
|
||||
// //Console.WriteLine("codes["+i+"] = rev(" + nextCode[bits-1]+"),
|
||||
// +bits);
|
||||
// }
|
||||
|
||||
codes[i] = BitReverse(nextCode[bits - 1]);
|
||||
nextCode[bits - 1] += 1 << (16 - bits);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public void BuildTree()
|
||||
{
|
||||
int numSymbols = freqs.Length;
|
||||
|
||||
/* heap is a priority queue, sorted by frequency, least frequent
|
||||
* nodes first. The heap is a binary tree, with the property, that
|
||||
* the parent node is smaller than both child nodes. This assures
|
||||
* that the smallest node is the first parent.
|
||||
*
|
||||
* The binary tree is encoded in an array: 0 is root node and
|
||||
* the nodes 2*n+1, 2*n+2 are the child nodes of node n.
|
||||
*/
|
||||
int[] heap = new int[numSymbols];
|
||||
int heapLen = 0;
|
||||
int maxCode = 0;
|
||||
for (int n = 0; n < numSymbols; n++)
|
||||
{
|
||||
int freq = freqs[n];
|
||||
if (freq != 0)
|
||||
{
|
||||
// Insert n into heap
|
||||
int pos = heapLen++;
|
||||
int ppos;
|
||||
while (pos > 0 && freqs[heap[ppos = (pos - 1) / 2]] > freq)
|
||||
{
|
||||
heap[pos] = heap[ppos];
|
||||
pos = ppos;
|
||||
}
|
||||
heap[pos] = n;
|
||||
|
||||
maxCode = n;
|
||||
}
|
||||
}
|
||||
|
||||
/* We could encode a single literal with 0 bits but then we
|
||||
* don't see the literals. Therefore we force at least two
|
||||
* literals to avoid this case. We don't care about order in
|
||||
* this case, both literals get a 1 bit code.
|
||||
*/
|
||||
while (heapLen < 2)
|
||||
{
|
||||
int node = maxCode < 2 ? ++maxCode : 0;
|
||||
heap[heapLen++] = node;
|
||||
}
|
||||
|
||||
numCodes = Math.Max(maxCode + 1, minNumCodes);
|
||||
|
||||
int numLeafs = heapLen;
|
||||
int[] childs = new int[4 * heapLen - 2];
|
||||
int[] values = new int[2 * heapLen - 1];
|
||||
int numNodes = numLeafs;
|
||||
for (int i = 0; i < heapLen; i++)
|
||||
{
|
||||
int node = heap[i];
|
||||
childs[2 * i] = node;
|
||||
childs[2 * i + 1] = -1;
|
||||
values[i] = freqs[node] << 8;
|
||||
heap[i] = i;
|
||||
}
|
||||
|
||||
/* Construct the Huffman tree by repeatedly combining the least two
|
||||
* frequent nodes.
|
||||
*/
|
||||
do
|
||||
{
|
||||
int first = heap[0];
|
||||
int last = heap[--heapLen];
|
||||
|
||||
// Propagate the hole to the leafs of the heap
|
||||
int ppos = 0;
|
||||
int path = 1;
|
||||
|
||||
while (path < heapLen)
|
||||
{
|
||||
if (path + 1 < heapLen && values[heap[path]] > values[heap[path + 1]])
|
||||
{
|
||||
path++;
|
||||
}
|
||||
|
||||
heap[ppos] = heap[path];
|
||||
ppos = path;
|
||||
path = path * 2 + 1;
|
||||
}
|
||||
|
||||
/* Now propagate the last element down along path. Normally
|
||||
* it shouldn't go too deep.
|
||||
*/
|
||||
int lastVal = values[last];
|
||||
while ((path = ppos) > 0 && values[heap[ppos = (path - 1) / 2]] > lastVal)
|
||||
{
|
||||
heap[path] = heap[ppos];
|
||||
}
|
||||
heap[path] = last;
|
||||
|
||||
int second = heap[0];
|
||||
|
||||
// Create a new node father of first and second
|
||||
last = numNodes++;
|
||||
childs[2 * last] = first;
|
||||
childs[2 * last + 1] = second;
|
||||
int mindepth = Math.Min(values[first] & 0xff, values[second] & 0xff);
|
||||
values[last] = lastVal = values[first] + values[second] - mindepth + 1;
|
||||
|
||||
// Again, propagate the hole to the leafs
|
||||
ppos = 0;
|
||||
path = 1;
|
||||
|
||||
while (path < heapLen)
|
||||
{
|
||||
if (path + 1 < heapLen && values[heap[path]] > values[heap[path + 1]])
|
||||
{
|
||||
path++;
|
||||
}
|
||||
|
||||
heap[ppos] = heap[path];
|
||||
ppos = path;
|
||||
path = ppos * 2 + 1;
|
||||
}
|
||||
|
||||
// Now propagate the new element down along path
|
||||
while ((path = ppos) > 0 && values[heap[ppos = (path - 1) / 2]] > lastVal)
|
||||
{
|
||||
heap[path] = heap[ppos];
|
||||
}
|
||||
heap[path] = last;
|
||||
} while (heapLen > 1);
|
||||
|
||||
if (heap[0] != childs.Length / 2 - 1)
|
||||
{
|
||||
throw new SharpZipBaseException("Heap invariant violated");
|
||||
}
|
||||
|
||||
BuildLength(childs);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get encoded length
|
||||
/// </summary>
|
||||
/// <returns>Encoded length, the sum of frequencies * lengths</returns>
|
||||
public int GetEncodedLength()
|
||||
{
|
||||
int len = 0;
|
||||
for (int i = 0; i < freqs.Length; i++)
|
||||
{
|
||||
len += freqs[i] * length[i];
|
||||
}
|
||||
return len;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Scan a literal or distance tree to determine the frequencies of the codes
|
||||
/// in the bit length tree.
|
||||
/// </summary>
|
||||
public void CalcBLFreq(Tree blTree)
|
||||
{
|
||||
int max_count; /* max repeat count */
|
||||
int min_count; /* min repeat count */
|
||||
int count; /* repeat count of the current code */
|
||||
int curlen = -1; /* length of current code */
|
||||
|
||||
int i = 0;
|
||||
while (i < numCodes)
|
||||
{
|
||||
count = 1;
|
||||
int nextlen = length[i];
|
||||
if (nextlen == 0)
|
||||
{
|
||||
max_count = 138;
|
||||
min_count = 3;
|
||||
}
|
||||
else
|
||||
{
|
||||
max_count = 6;
|
||||
min_count = 3;
|
||||
if (curlen != nextlen)
|
||||
{
|
||||
blTree.freqs[nextlen]++;
|
||||
count = 0;
|
||||
}
|
||||
}
|
||||
curlen = nextlen;
|
||||
i++;
|
||||
|
||||
while (i < numCodes && curlen == length[i])
|
||||
{
|
||||
i++;
|
||||
if (++count >= max_count)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (count < min_count)
|
||||
{
|
||||
blTree.freqs[curlen] += (short)count;
|
||||
}
|
||||
else if (curlen != 0)
|
||||
{
|
||||
blTree.freqs[REP_3_6]++;
|
||||
}
|
||||
else if (count <= 10)
|
||||
{
|
||||
blTree.freqs[REP_3_10]++;
|
||||
}
|
||||
else
|
||||
{
|
||||
blTree.freqs[REP_11_138]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Write tree values
|
||||
/// </summary>
|
||||
/// <param name="blTree">Tree to write</param>
|
||||
public void WriteTree(Tree blTree)
|
||||
{
|
||||
int max_count; // max repeat count
|
||||
int min_count; // min repeat count
|
||||
int count; // repeat count of the current code
|
||||
int curlen = -1; // length of current code
|
||||
|
||||
int i = 0;
|
||||
while (i < numCodes)
|
||||
{
|
||||
count = 1;
|
||||
int nextlen = length[i];
|
||||
if (nextlen == 0)
|
||||
{
|
||||
max_count = 138;
|
||||
min_count = 3;
|
||||
}
|
||||
else
|
||||
{
|
||||
max_count = 6;
|
||||
min_count = 3;
|
||||
if (curlen != nextlen)
|
||||
{
|
||||
blTree.WriteSymbol(nextlen);
|
||||
count = 0;
|
||||
}
|
||||
}
|
||||
curlen = nextlen;
|
||||
i++;
|
||||
|
||||
while (i < numCodes && curlen == length[i])
|
||||
{
|
||||
i++;
|
||||
if (++count >= max_count)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (count < min_count)
|
||||
{
|
||||
while (count-- > 0)
|
||||
{
|
||||
blTree.WriteSymbol(curlen);
|
||||
}
|
||||
}
|
||||
else if (curlen != 0)
|
||||
{
|
||||
blTree.WriteSymbol(REP_3_6);
|
||||
dh.pending.WriteBits(count - 3, 2);
|
||||
}
|
||||
else if (count <= 10)
|
||||
{
|
||||
blTree.WriteSymbol(REP_3_10);
|
||||
dh.pending.WriteBits(count - 3, 3);
|
||||
}
|
||||
else
|
||||
{
|
||||
blTree.WriteSymbol(REP_11_138);
|
||||
dh.pending.WriteBits(count - 11, 7);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private void BuildLength(int[] childs)
|
||||
{
|
||||
this.length = new byte[freqs.Length];
|
||||
int numNodes = childs.Length / 2;
|
||||
int numLeafs = (numNodes + 1) / 2;
|
||||
int overflow = 0;
|
||||
|
||||
for (int i = 0; i < maxLength; i++)
|
||||
{
|
||||
bl_counts[i] = 0;
|
||||
}
|
||||
|
||||
// First calculate optimal bit lengths
|
||||
int[] lengths = new int[numNodes];
|
||||
lengths[numNodes - 1] = 0;
|
||||
|
||||
for (int i = numNodes - 1; i >= 0; i--)
|
||||
{
|
||||
if (childs[2 * i + 1] != -1)
|
||||
{
|
||||
int bitLength = lengths[i] + 1;
|
||||
if (bitLength > maxLength)
|
||||
{
|
||||
bitLength = maxLength;
|
||||
overflow++;
|
||||
}
|
||||
lengths[childs[2 * i]] = lengths[childs[2 * i + 1]] = bitLength;
|
||||
}
|
||||
else
|
||||
{
|
||||
// A leaf node
|
||||
int bitLength = lengths[i];
|
||||
bl_counts[bitLength - 1]++;
|
||||
this.length[childs[2 * i]] = (byte)lengths[i];
|
||||
}
|
||||
}
|
||||
|
||||
// if (DeflaterConstants.DEBUGGING) {
|
||||
// //Console.WriteLine("Tree "+freqs.Length+" lengths:");
|
||||
// for (int i=0; i < numLeafs; i++) {
|
||||
// //Console.WriteLine("Node "+childs[2*i]+" freq: "+freqs[childs[2*i]]
|
||||
// + " len: "+length[childs[2*i]]);
|
||||
// }
|
||||
// }
|
||||
|
||||
if (overflow == 0)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
int incrBitLen = maxLength - 1;
|
||||
do
|
||||
{
|
||||
// Find the first bit length which could increase:
|
||||
while (bl_counts[--incrBitLen] == 0)
|
||||
{
|
||||
}
|
||||
|
||||
// Move this node one down and remove a corresponding
|
||||
// number of overflow nodes.
|
||||
do
|
||||
{
|
||||
bl_counts[incrBitLen]--;
|
||||
bl_counts[++incrBitLen]++;
|
||||
overflow -= 1 << (maxLength - 1 - incrBitLen);
|
||||
} while (overflow > 0 && incrBitLen < maxLength - 1);
|
||||
} while (overflow > 0);
|
||||
|
||||
/* We may have overshot above. Move some nodes from maxLength to
|
||||
* maxLength-1 in that case.
|
||||
*/
|
||||
bl_counts[maxLength - 1] += overflow;
|
||||
bl_counts[maxLength - 2] -= overflow;
|
||||
|
||||
/* Now recompute all bit lengths, scanning in increasing
|
||||
* frequency. It is simpler to reconstruct all lengths instead of
|
||||
* fixing only the wrong ones. This idea is taken from 'ar'
|
||||
* written by Haruhiko Okumura.
|
||||
*
|
||||
* The nodes were inserted with decreasing frequency into the childs
|
||||
* array.
|
||||
*/
|
||||
int nodePtr = 2 * numLeafs;
|
||||
for (int bits = maxLength; bits != 0; bits--)
|
||||
{
|
||||
int n = bl_counts[bits - 1];
|
||||
while (n > 0)
|
||||
{
|
||||
int childPtr = 2 * childs[nodePtr++];
|
||||
if (childs[childPtr + 1] == -1)
|
||||
{
|
||||
// We found another leaf
|
||||
length[childs[childPtr]] = (byte)bits;
|
||||
n--;
|
||||
}
|
||||
}
|
||||
}
|
||||
// if (DeflaterConstants.DEBUGGING) {
|
||||
// //Console.WriteLine("*** After overflow elimination. ***");
|
||||
// for (int i=0; i < numLeafs; i++) {
|
||||
// //Console.WriteLine("Node "+childs[2*i]+" freq: "+freqs[childs[2*i]]
|
||||
// + " len: "+length[childs[2*i]]);
|
||||
// }
|
||||
// }
|
||||
}
|
||||
}
|
||||
|
||||
#region Instance Fields
|
||||
|
||||
/// <summary>
|
||||
/// Pending buffer to use
|
||||
/// </summary>
|
||||
public DeflaterPending pending;
|
||||
|
||||
private Tree literalTree;
|
||||
private Tree distTree;
|
||||
private Tree blTree;
|
||||
|
||||
// Buffer for distances
|
||||
private short[] d_buf;
|
||||
|
||||
private byte[] l_buf;
|
||||
private int last_lit;
|
||||
private int extra_bits;
|
||||
|
||||
#endregion Instance Fields
|
||||
|
||||
static DeflaterHuffman()
|
||||
{
|
||||
// See RFC 1951 3.2.6
|
||||
// Literal codes
|
||||
staticLCodes = new short[LITERAL_NUM];
|
||||
staticLLength = new byte[LITERAL_NUM];
|
||||
|
||||
int i = 0;
|
||||
while (i < 144)
|
||||
{
|
||||
staticLCodes[i] = BitReverse((0x030 + i) << 8);
|
||||
staticLLength[i++] = 8;
|
||||
}
|
||||
|
||||
while (i < 256)
|
||||
{
|
||||
staticLCodes[i] = BitReverse((0x190 - 144 + i) << 7);
|
||||
staticLLength[i++] = 9;
|
||||
}
|
||||
|
||||
while (i < 280)
|
||||
{
|
||||
staticLCodes[i] = BitReverse((0x000 - 256 + i) << 9);
|
||||
staticLLength[i++] = 7;
|
||||
}
|
||||
|
||||
while (i < LITERAL_NUM)
|
||||
{
|
||||
staticLCodes[i] = BitReverse((0x0c0 - 280 + i) << 8);
|
||||
staticLLength[i++] = 8;
|
||||
}
|
||||
|
||||
// Distance codes
|
||||
staticDCodes = new short[DIST_NUM];
|
||||
staticDLength = new byte[DIST_NUM];
|
||||
for (i = 0; i < DIST_NUM; i++)
|
||||
{
|
||||
staticDCodes[i] = BitReverse(i << 11);
|
||||
staticDLength[i] = 5;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Construct instance with pending buffer
|
||||
/// </summary>
|
||||
/// <param name="pending">Pending buffer to use</param>
|
||||
public DeflaterHuffman(DeflaterPending pending)
|
||||
{
|
||||
this.pending = pending;
|
||||
|
||||
literalTree = new Tree(this, LITERAL_NUM, 257, 15);
|
||||
distTree = new Tree(this, DIST_NUM, 1, 15);
|
||||
blTree = new Tree(this, BITLEN_NUM, 4, 7);
|
||||
|
||||
d_buf = new short[BUFSIZE];
|
||||
l_buf = new byte[BUFSIZE];
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Reset internal state
|
||||
/// </summary>
|
||||
public void Reset()
|
||||
{
|
||||
last_lit = 0;
|
||||
extra_bits = 0;
|
||||
literalTree.Reset();
|
||||
distTree.Reset();
|
||||
blTree.Reset();
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Write all trees to pending buffer
|
||||
/// </summary>
|
||||
/// <param name="blTreeCodes">The number/rank of treecodes to send.</param>
|
||||
public void SendAllTrees(int blTreeCodes)
|
||||
{
|
||||
blTree.BuildCodes();
|
||||
literalTree.BuildCodes();
|
||||
distTree.BuildCodes();
|
||||
pending.WriteBits(literalTree.numCodes - 257, 5);
|
||||
pending.WriteBits(distTree.numCodes - 1, 5);
|
||||
pending.WriteBits(blTreeCodes - 4, 4);
|
||||
for (int rank = 0; rank < blTreeCodes; rank++)
|
||||
{
|
||||
pending.WriteBits(blTree.length[BL_ORDER[rank]], 3);
|
||||
}
|
||||
literalTree.WriteTree(blTree);
|
||||
distTree.WriteTree(blTree);
|
||||
|
||||
#if DebugDeflation
|
||||
if (DeflaterConstants.DEBUGGING) {
|
||||
blTree.CheckEmpty();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Compress current buffer writing data to pending buffer
|
||||
/// </summary>
|
||||
public void CompressBlock()
|
||||
{
|
||||
for (int i = 0; i < last_lit; i++)
|
||||
{
|
||||
int litlen = l_buf[i] & 0xff;
|
||||
int dist = d_buf[i];
|
||||
if (dist-- != 0)
|
||||
{
|
||||
// if (DeflaterConstants.DEBUGGING) {
|
||||
// Console.Write("["+(dist+1)+","+(litlen+3)+"]: ");
|
||||
// }
|
||||
|
||||
int lc = Lcode(litlen);
|
||||
literalTree.WriteSymbol(lc);
|
||||
|
||||
int bits = (lc - 261) / 4;
|
||||
if (bits > 0 && bits <= 5)
|
||||
{
|
||||
pending.WriteBits(litlen & ((1 << bits) - 1), bits);
|
||||
}
|
||||
|
||||
int dc = Dcode(dist);
|
||||
distTree.WriteSymbol(dc);
|
||||
|
||||
bits = dc / 2 - 1;
|
||||
if (bits > 0)
|
||||
{
|
||||
pending.WriteBits(dist & ((1 << bits) - 1), bits);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// if (DeflaterConstants.DEBUGGING) {
|
||||
// if (litlen > 32 && litlen < 127) {
|
||||
// Console.Write("("+(char)litlen+"): ");
|
||||
// } else {
|
||||
// Console.Write("{"+litlen+"}: ");
|
||||
// }
|
||||
// }
|
||||
literalTree.WriteSymbol(litlen);
|
||||
}
|
||||
}
|
||||
|
||||
#if DebugDeflation
|
||||
if (DeflaterConstants.DEBUGGING) {
|
||||
Console.Write("EOF: ");
|
||||
}
|
||||
#endif
|
||||
literalTree.WriteSymbol(EOF_SYMBOL);
|
||||
|
||||
#if DebugDeflation
|
||||
if (DeflaterConstants.DEBUGGING) {
|
||||
literalTree.CheckEmpty();
|
||||
distTree.CheckEmpty();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Flush block to output with no compression
|
||||
/// </summary>
|
||||
/// <param name="stored">Data to write</param>
|
||||
/// <param name="storedOffset">Index of first byte to write</param>
|
||||
/// <param name="storedLength">Count of bytes to write</param>
|
||||
/// <param name="lastBlock">True if this is the last block</param>
|
||||
public void FlushStoredBlock(byte[] stored, int storedOffset, int storedLength, bool lastBlock)
|
||||
{
|
||||
#if DebugDeflation
|
||||
// if (DeflaterConstants.DEBUGGING) {
|
||||
// //Console.WriteLine("Flushing stored block "+ storedLength);
|
||||
// }
|
||||
#endif
|
||||
pending.WriteBits((DeflaterConstants.STORED_BLOCK << 1) + (lastBlock ? 1 : 0), 3);
|
||||
pending.AlignToByte();
|
||||
pending.WriteShort(storedLength);
|
||||
pending.WriteShort(~storedLength);
|
||||
pending.WriteBlock(stored, storedOffset, storedLength);
|
||||
Reset();
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Flush block to output with compression
|
||||
/// </summary>
|
||||
/// <param name="stored">Data to flush</param>
|
||||
/// <param name="storedOffset">Index of first byte to flush</param>
|
||||
/// <param name="storedLength">Count of bytes to flush</param>
|
||||
/// <param name="lastBlock">True if this is the last block</param>
|
||||
public void FlushBlock(byte[] stored, int storedOffset, int storedLength, bool lastBlock)
|
||||
{
|
||||
literalTree.freqs[EOF_SYMBOL]++;
|
||||
|
||||
// Build trees
|
||||
literalTree.BuildTree();
|
||||
distTree.BuildTree();
|
||||
|
||||
// Calculate bitlen frequency
|
||||
literalTree.CalcBLFreq(blTree);
|
||||
distTree.CalcBLFreq(blTree);
|
||||
|
||||
// Build bitlen tree
|
||||
blTree.BuildTree();
|
||||
|
||||
int blTreeCodes = 4;
|
||||
for (int i = 18; i > blTreeCodes; i--)
|
||||
{
|
||||
if (blTree.length[BL_ORDER[i]] > 0)
|
||||
{
|
||||
blTreeCodes = i + 1;
|
||||
}
|
||||
}
|
||||
int opt_len = 14 + blTreeCodes * 3 + blTree.GetEncodedLength() +
|
||||
literalTree.GetEncodedLength() + distTree.GetEncodedLength() +
|
||||
extra_bits;
|
||||
|
||||
int static_len = extra_bits;
|
||||
for (int i = 0; i < LITERAL_NUM; i++)
|
||||
{
|
||||
static_len += literalTree.freqs[i] * staticLLength[i];
|
||||
}
|
||||
for (int i = 0; i < DIST_NUM; i++)
|
||||
{
|
||||
static_len += distTree.freqs[i] * staticDLength[i];
|
||||
}
|
||||
if (opt_len >= static_len)
|
||||
{
|
||||
// Force static trees
|
||||
opt_len = static_len;
|
||||
}
|
||||
|
||||
if (storedOffset >= 0 && storedLength + 4 < opt_len >> 3)
|
||||
{
|
||||
// Store Block
|
||||
|
||||
// if (DeflaterConstants.DEBUGGING) {
|
||||
// //Console.WriteLine("Storing, since " + storedLength + " < " + opt_len
|
||||
// + " <= " + static_len);
|
||||
// }
|
||||
FlushStoredBlock(stored, storedOffset, storedLength, lastBlock);
|
||||
}
|
||||
else if (opt_len == static_len)
|
||||
{
|
||||
// Encode with static tree
|
||||
pending.WriteBits((DeflaterConstants.STATIC_TREES << 1) + (lastBlock ? 1 : 0), 3);
|
||||
literalTree.SetStaticCodes(staticLCodes, staticLLength);
|
||||
distTree.SetStaticCodes(staticDCodes, staticDLength);
|
||||
CompressBlock();
|
||||
Reset();
|
||||
}
|
||||
else
|
||||
{
|
||||
// Encode with dynamic tree
|
||||
pending.WriteBits((DeflaterConstants.DYN_TREES << 1) + (lastBlock ? 1 : 0), 3);
|
||||
SendAllTrees(blTreeCodes);
|
||||
CompressBlock();
|
||||
Reset();
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get value indicating if internal buffer is full
|
||||
/// </summary>
|
||||
/// <returns>true if buffer is full</returns>
|
||||
public bool IsFull()
|
||||
{
|
||||
return last_lit >= BUFSIZE;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Add literal to buffer
|
||||
/// </summary>
|
||||
/// <param name="literal">Literal value to add to buffer.</param>
|
||||
/// <returns>Value indicating internal buffer is full</returns>
|
||||
public bool TallyLit(int literal)
|
||||
{
|
||||
// if (DeflaterConstants.DEBUGGING) {
|
||||
// if (lit > 32 && lit < 127) {
|
||||
// //Console.WriteLine("("+(char)lit+")");
|
||||
// } else {
|
||||
// //Console.WriteLine("{"+lit+"}");
|
||||
// }
|
||||
// }
|
||||
d_buf[last_lit] = 0;
|
||||
l_buf[last_lit++] = (byte)literal;
|
||||
literalTree.freqs[literal]++;
|
||||
return IsFull();
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Add distance code and length to literal and distance trees
|
||||
/// </summary>
|
||||
/// <param name="distance">Distance code</param>
|
||||
/// <param name="length">Length</param>
|
||||
/// <returns>Value indicating if internal buffer is full</returns>
|
||||
public bool TallyDist(int distance, int length)
|
||||
{
|
||||
// if (DeflaterConstants.DEBUGGING) {
|
||||
// //Console.WriteLine("[" + distance + "," + length + "]");
|
||||
// }
|
||||
|
||||
d_buf[last_lit] = (short)distance;
|
||||
l_buf[last_lit++] = (byte)(length - 3);
|
||||
|
||||
int lc = Lcode(length - 3);
|
||||
literalTree.freqs[lc]++;
|
||||
if (lc >= 265 && lc < 285)
|
||||
{
|
||||
extra_bits += (lc - 261) / 4;
|
||||
}
|
||||
|
||||
int dc = Dcode(distance - 1);
|
||||
distTree.freqs[dc]++;
|
||||
if (dc >= 4)
|
||||
{
|
||||
extra_bits += dc / 2 - 1;
|
||||
}
|
||||
return IsFull();
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Reverse the bits of a 16 bit value.
|
||||
/// </summary>
|
||||
/// <param name="toReverse">Value to reverse bits</param>
|
||||
/// <returns>Value with bits reversed</returns>
|
||||
public static short BitReverse(int toReverse)
|
||||
{
|
||||
return (short)(bit4Reverse[toReverse & 0xF] << 12 |
|
||||
bit4Reverse[(toReverse >> 4) & 0xF] << 8 |
|
||||
bit4Reverse[(toReverse >> 8) & 0xF] << 4 |
|
||||
bit4Reverse[toReverse >> 12]);
|
||||
}
|
||||
|
||||
private static int Lcode(int length)
|
||||
{
|
||||
if (length == 255)
|
||||
{
|
||||
return 285;
|
||||
}
|
||||
|
||||
int code = 257;
|
||||
while (length >= 8)
|
||||
{
|
||||
code += 4;
|
||||
length >>= 1;
|
||||
}
|
||||
return code + length;
|
||||
}
|
||||
|
||||
private static int Dcode(int distance)
|
||||
{
|
||||
int code = 0;
|
||||
while (distance >= 4)
|
||||
{
|
||||
code += 2;
|
||||
distance >>= 1;
|
||||
}
|
||||
return code + distance;
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user